Abstract:Data interpolation is a fundamental step in any seismic processing workflow. Among machine learning techniques recently proposed to solve data interpolation as an inverse problem, Deep Prior paradigm aims at employing a convolutional neural network to capture priors on the data in order to regularize the inversion. However, this technique lacks of reconstruction precision when interpolating highly decimated data due to the presence of aliasing. In this work, we propose to improve Deep Prior inversion by adding a directional Laplacian as regularization term to the problem. This regularizer drives the optimization towards solutions that honor the slopes estimated from the interpolated data low frequencies. We provide some numerical examples to showcase the methodology devised in this manuscript, showing that our results are less prone to aliasing also in presence of noisy and corrupted data.
Abstract:Source device identification is an important topic in image forensics since it allows to trace back the origin of an image. Its forensics counter-part is source device anonymization, that is, to mask any trace on the image that can be useful for identifying the source device. A typical trace exploited for source device identification is the Photo Response Non-Uniformity (PRNU), a noise pattern left by the device on the acquired images. In this paper, we devise a methodology for suppressing such a trace from natural images without significant impact on image quality. Specifically, we turn PRNU anonymization into an optimization problem in a Deep Image Prior (DIP) framework. In a nutshell, a Convolutional Neural Network (CNN) acts as generator and returns an image that is anonymized with respect to the source PRNU, still maintaining high visual quality. With respect to widely-adopted deep learning paradigms, our proposed CNN is not trained on a set of input-target pairs of images. Instead, it is optimized to reconstruct the PRNU-free image from the original image under analysis itself. This makes the approach particularly suitable in scenarios where large heterogeneous databases are analyzed and prevents any problem due to lack of generalization. Through numerical examples on publicly available datasets, we prove our methodology to be effective compared to state-of-the-art techniques.
Abstract:Seismic data processing algorithms greatly benefit, or even require regularly sampled and reliable data. Therefore, interpolation and denoising play a fundamental role as starting steps of most seismic data processing pipelines. In this paper, we exploit convolutional neural networks for the joint tasks of interpolation and random noise attenuation of 2D common shot gathers. Inspired by the great contributions achieved in image processing and computer vision, we investigate a particular architecture of convolutional neural network known as U-net, which implements a convolutional autoencoder able to describe the complex features of clean and regularly sampled data for reconstructing the corrupted ones. In training phase we exploit part of the data for tailoring the network to the specific tasks of interpolation, denoising and joint denoising/interpolation, while during the system deployment we are able to retrieve the remaining corrupted shot gathers in a computationally efficient procedure. In our experimental campaign, we consider a plurality of data corruptions, including different noise models and missing traces' distributions. We illustrate the advantages of the aforementioned strategy through several examples on synthetic and field data. Moreover, we compare the proposed denoising and interpolation technique to a recent state-of-the-art method.