Abstract:Many everyday tasks, ranging from appliance repair and cooking to car maintenance, require expert knowledge, particularly for complex, multi-step procedures. Despite growing interest in AI agents for augmented reality (AR) assistance, progress remains limited by the scarcity of large-scale multimodal conversational datasets grounded in real-world task execution, in part due to the cost and logistical complexity of human-assisted data collection. In this paper, we present a framework to automatically transform single person instructional videos into two-person multimodal task-guidance conversations. Our fully automatic pipeline, based on large language models, provides a scalable and cost efficient alternative to traditional data collection approaches. Using this framework, we introduce HowToDIV, a multimodal dataset comprising 507 conversations, 6,636 question answer pairs, and 24 hours of video spanning multiple domains. Each session consists of a multi-turn expert-novice interaction. Finally, we report baseline results using Gemma 3 and Qwen 2.5 on HowToDIV, providing an initial benchmark for multimodal procedural task assistance.




Abstract:Multimodal AI Agents are AI models that have the capability of interactively and cooperatively assisting human users to solve day-to-day tasks. Augmented Reality (AR) head worn devices can uniquely improve the user experience of solving procedural day-to-day tasks by providing egocentric multimodal (audio and video) observational capabilities to AI Agents. Such AR capabilities can help AI Agents see and listen to actions that users take which can relate to multimodal capabilities of human users. Existing AI Agents, either Large Language Models (LLMs) or Multimodal Vision-Language Models (VLMs) are reactive in nature, which means that models cannot take an action without reading or listening to the human user's prompts. Proactivity of AI Agents on the other hand can help the human user detect and correct any mistakes in agent observed tasks, encourage users when they do tasks correctly or simply engage in conversation with the user - akin to a human teaching or assisting a user. Our proposed YET to Intervene (YETI) multimodal agent focuses on the research question of identifying circumstances that may require the agent to intervene proactively. This allows the agent to understand when it can intervene in a conversation with human users that can help the user correct mistakes on tasks, like cooking, using AR. Our YETI Agent learns scene understanding signals based on interpretable notions of Structural Similarity (SSIM) on consecutive video frames. We also define the alignment signal which the AI Agent can learn to identify if the video frames corresponding to the user's actions on the task are consistent with expected actions. These signals are used by our AI Agent to determine when it should proactively intervene. We compare our results on the instances of proactive intervention in the HoloAssist multimodal benchmark for an expert agent guiding a user to complete procedural tasks.