Abstract:User-driven privacy allows individuals to control whether and at what granularity their data is shared, leading to datasets that mix original, generalized, and missing values within the same records and attributes. While such representations are intuitive for privacy, they pose challenges for machine learning, which typically treats non-original values as new categories or as missing, thereby discarding generalization semantics. For learning from such tabular data, we propose novel data transformation strategies that account for heterogeneous anonymization and evaluate them alongside standard imputation and LLM-based approaches. We employ multiple datasets, privacy configurations, and deployment scenarios, demonstrating that our method reliably regains utility. Our results show that generalized values are preferable to pure suppression, that the best data preparation strategy depends on the scenario, and that consistent data representations are crucial for maintaining downstream utility. Overall, our findings highlight that effective learning is tied to the appropriate handling of anonymized values.




Abstract:Privacy-Preserving Record linkage (PPRL) is an essential component in data integration tasks of sensitive information. The linkage quality determines the usability of combined datasets and (machine learning) applications based on them. We present a novel privacy-preserving protocol that integrates clerical review in PPRL using a multi-layer active learning process. Uncertain match candidates are reviewed on several layers by human and non-human oracles to reduce the amount of disclosed information per record and in total. Predictions are propagated back to update previous layers, resulting in an improved linkage performance for non-reviewed candidates as well. The data owners remain in control of the amount of information they share for each record. Therefore, our approach follows need-to-know and data sovereignty principles. The experimental evaluation on real-world datasets shows considerable linkage quality improvements with limited labeling effort and privacy risks.




Abstract:Cluster repair methods aim to determine errors in clusters and modify them so that each cluster consists of records representing the same entity. Current cluster repair methodologies primarily assume duplicate-free data sources, where each record from one source corresponds to a unique record from another. However, real-world data often deviates from this assumption due to quality issues. Recent approaches apply clustering methods in combination with link categorization methods so they can be applied to data sources with duplicates. Nevertheless, the results do not show a clear picture since the quality highly varies depending on the configuration and dataset. In this study, we introduce a novel approach for cluster repair that utilizes graph metrics derived from the underlying similarity graphs. These metrics are pivotal in constructing a classification model to distinguish between correct and incorrect edges. To address the challenge of limited training data, we integrate an active learning mechanism tailored to cluster-specific attributes. The evaluation shows that the method outperforms existing cluster repair methods without distinguishing between duplicate-free or dirty data sources. Notably, our modified active learning strategy exhibits enhanced performance when dealing with datasets containing duplicates, showcasing its effectiveness in such scenarios.