Abstract:Training-free metrics (a.k.a. zero-cost proxies) are widely used to avoid resource-intensive neural network training, especially in Neural Architecture Search (NAS). Recent studies show that existing training-free metrics have several limitations, such as limited correlation and poor generalisation across different search spaces and tasks. Hence, we propose Sample-Wise Activation Patterns and its derivative, SWAP-Score, a novel high-performance training-free metric. It measures the expressivity of networks over a batch of input samples. The SWAP-Score is strongly correlated with ground-truth performance across various search spaces and tasks, outperforming 15 existing training-free metrics on NAS-Bench-101/201/301 and TransNAS-Bench-101. The SWAP-Score can be further enhanced by regularisation, which leads to even higher correlations in cell-based search space and enables model size control during the search. For example, Spearman's rank correlation coefficient between regularised SWAP-Score and CIFAR-100 validation accuracies on NAS-Bench-201 networks is 0.90, significantly higher than 0.80 from the second-best metric, NWOT. When integrated with an evolutionary algorithm for NAS, our SWAP-NAS achieves competitive performance on CIFAR-10 and ImageNet in approximately 6 minutes and 9 minutes of GPU time respectively.
Abstract:Neural architecture search (NAS) aims to automate architecture engineering in neural networks. This often requires a high computational overhead to evaluate a number of candidate networks from the set of all possible networks in the search space during the search. Prediction of the networks' performance can alleviate this high computational overhead by mitigating the need for evaluating every candidate network. Developing such a predictor typically requires a large number of evaluated architectures which may be difficult to obtain. We address this challenge by proposing a novel evolutionary-based NAS strategy, Predictor-assisted E-NAS (PRE-NAS), which can perform well even with an extremely small number of evaluated architectures. PRE-NAS leverages new evolutionary search strategies and integrates high-fidelity weight inheritance over generations. Unlike one-shot strategies, which may suffer from bias in the evaluation due to weight sharing, offspring candidates in PRE-NAS are topologically homogeneous, which circumvents bias and leads to more accurate predictions. Extensive experiments on NAS-Bench-201 and DARTS search spaces show that PRE-NAS can outperform state-of-the-art NAS methods. With only a single GPU searching for 0.6 days, competitive architecture can be found by PRE-NAS which achieves 2.40% and 24% test error rates on CIFAR-10 and ImageNet respectively.