Abstract:The advancements in generative AI have enabled the improvement of audio synthesis models, including text-to-speech and voice conversion. This raises concerns about its potential misuse in social manipulation and political interference, as synthetic speech has become indistinguishable from natural human speech. Several speech-generation programs are utilized for malicious purposes, especially impersonating individuals through phone calls. Therefore, detecting fake audio is crucial to maintain social security and safeguard the integrity of information. Recent research has proposed a D-CAPTCHA system based on the challenge-response protocol to differentiate fake phone calls from real ones. In this work, we study the resilience of this system and introduce a more robust version, D-CAPTCHA++, to defend against fake calls. Specifically, we first expose the vulnerability of the D-CAPTCHA system under transferable imperceptible adversarial attack. Secondly, we mitigate such vulnerability by improving the robustness of the system by using adversarial training in D-CAPTCHA deepfake detectors and task classifiers.
Abstract:Federated learning (FL) is recently surging as a promising decentralized deep learning (DL) framework that enables DL-based approaches trained collaboratively across clients without sharing private data. However, in the context of the central party being active and dishonest, the data of individual clients might be perfectly reconstructed, leading to the high possibility of sensitive information being leaked. Moreover, FL also suffers from the nonindependent and identically distributed (non-IID) data among clients, resulting in the degradation in the inference performance on local clients' data. In this paper, we propose a novel framework, namely Personalized Privacy-Preserving Federated Learning (PPPFL), with a concentration on cross-silo FL to overcome these challenges. Specifically, we introduce a stabilized variant of the Model-Agnostic Meta-Learning (MAML) algorithm to collaboratively train a global initialization from clients' synthetic data generated by Differential Private Generative Adversarial Networks (DP-GANs). After reaching convergence, the global initialization will be locally adapted by the clients to their private data. Through extensive experiments, we empirically show that our proposed framework outperforms multiple FL baselines on different datasets, including MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100.