Abstract:We consider scenarios where a very accurate predictive model using restricted features is available at the time of training of a larger, full-featured, model. This restricted model may be thought of as "side-information", derived either from an auxiliary exhaustive dataset or on the same dataset, by forcing the restriction. How can the restricted model be useful to the full model? We propose an approach for transferring the knowledge of the restricted model to the full model, by aligning the full model's context-restricted performance with that of the restricted model's. We call this methodology Induced Model Matching (IMM) and first illustrate its general applicability by using logistic regression as a toy example. We then explore IMM's use in language modeling, the application that initially inspired it, and where it offers an explicit foundation in contrast to the implicit use of restricted models in techniques such as noising. We demonstrate the methodology on both LSTM and transformer full models, using $N$-grams as restricted models. To further illustrate the potential of the principle whenever it is much cheaper to collect restricted rather than full information, we conclude with a simple RL example where POMDP policies can improve learned MDP policies via IMM.
Abstract:Robust and computationally efficient anomaly detection in videos is a problem in video surveillance systems. We propose a technique to increase robustness and reduce computational complexity in a Convolutional Neural Network (CNN) based anomaly detector that utilizes the optical flow information of video data. We reduce the complexity of the network by denoising the intermediate layer outputs of the CNN and by using powers-of-two weights, which replaces the computationally expensive multiplication operations with bit-shift operations. Denoising operation during inference forces small valued intermediate layer outputs to zero. The number of zeros in the network significantly increases as a result of denoising, we can implement the CNN about 10% faster than a comparable network while detecting all the anomalies in the testing set. It turns out that denoising operation also provides robustness because the contribution of small intermediate values to the final result is negligible. During training we also generate motion vector images by a Generative Adversarial Network (GAN) to improve the robustness of the overall system. We experimentally observe that the resulting system is robust to background motion.