Abstract:In a supervised classification split conformal/inductive framework with $K$ classes, a calibration sample of $n$ labeled examples is observed for inference on the label of a new unlabeled example. In this work, we explore the case where a "batch" of $m$ independent such unlabeled examples is given, and a multivariate prediction set with $1-\alpha$ coverage should be provided for this batch. Hence, the batch prediction set takes the form of a collection of label vectors of size $m$, while the calibration sample only contains univariate labels. Using the Bonferroni correction consists in concatenating the individual prediction sets at level $1-\alpha/m$ (Vovk 2013). We propose a uniformly more powerful solution, based on specific combinations of conformal $p$-values that exploit the Simes inequality (Simes 1986). Intuitively, the pooled evidence of fairly "easy" examples of the batch can help provide narrower batch prediction sets. We also introduced adaptive versions of the novel procedure that are particularly effective when the batch prediction set is expected to be large. The theoretical guarantees are provided when all examples are iid, as well as more generally when iid is assumed only conditionally within each class. In particular, our results are also valid under a label distribution shift since the distribution of the labels need not be the same in the calibration sample and in the new `batch'. The usefulness of the method is illustrated on synthetic and real data examples.
Abstract:In supervised learning, including regression and classification, conformal methods provide prediction sets for the outcome/label with finite sample coverage for any machine learning predictors. We consider here the case where such prediction sets come after a selection process. The selection process requires that the selected prediction sets be `informative' in a well defined sense. We consider both the classification and regression settings where the analyst may consider as informative only the sample with prediction label sets or prediction intervals small enough, excluding null values, or obeying other appropriate `monotone' constraints. While this covers many settings of possible interest in various applications, we develop a unified framework for building such informative conformal prediction sets while controlling the false coverage rate (FCR) on the selected sample. While conformal prediction sets after selection have been the focus of much recent literature in the field, the new introduced procedures, called InfoSP and InfoSCOP, are to our knowledge the first ones providing FCR control for informative prediction sets. We show the usefulness of our resulting procedures on real and simulated data.
Abstract:Conformal inference is a fundamental and versatile tool that provides distribution-free guarantees for many machine learning tasks. We consider the transductive setting, where decisions are made on a test sample of $m$ new points, giving rise to $m$ conformal $p$-values. {While classical results only concern their marginal distribution, we show that their joint distribution follows a P\'olya urn model, and establish a concentration inequality for their empirical distribution function.} The results hold for arbitrary exchangeable scores, including {\it adaptive} ones that can use the covariates of the test+calibration samples at training stage for increased accuracy. We demonstrate the usefulness of these theoretical results through uniform, in-probability guarantees for two machine learning tasks of current interest: interval prediction for transductive transfer learning and novelty detection based on two-class classification.