Abstract:This work presents a data-driven approach to estimating the sound absorption coefficient of an infinite porous slab using a neural network and a two-microphone measurement on a finite porous sample. A 1D-convolutional network predicts the sound absorption coefficient from the complex-valued transfer function between the sound pressure measured at the two microphone positions. The network is trained and validated with numerical data generated by a boundary element model using the Delany-Bazley-Miki model, demonstrating accurate predictions for various numerical samples. The method is experimentally validated with baffled rectangular samples of a fibrous material, where sample size and source height are varied. The results show that the neural network offers the possibility to reliably predict the in-situ sound absorption of a porous material using the traditional two-microphone method as if the sample were infinite. The normal-incidence sound absorption coefficient obtained by the network compares well with that obtained theoretically and in an impedance tube. The proposed method has promising perspectives for estimating the sound absorption coefficient of acoustic materials after installation and in realistic operational conditions.
Abstract:In multi-room environments, modelling the sound propagation is complex due to the coupling of rooms and diverse source-receiver positions. A common scenario is when the source and the receiver are in different rooms without a clear line of sight. For such source-receiver configurations, an initial increase in energy is observed, referred to as the "fade-in" of reverberation. Based on recent work of representing inhomogeneous and anisotropic reverberation with common decay times, this work proposes an extended parametric model that enables the modelling of the fade-in phenomenon. The method performs fitting on the envelopes, instead of energy decay functions, and allows negative amplitudes of decaying exponentials. We evaluate the method on simulated and measured multi-room environments, where we show that the proposed approach can now model the fade-ins that were unrealisable with the previous method.