Abstract:Enhancing simulation environments to replicate real-world driver behavior is essential for developing Autonomous Vehicle technology. While some previous works have studied the yielding reaction of lag vehicles in response to a merging car at highway on-ramps, the possible lane-change reaction of the lag car has not been widely studied. In this work we aim to improve the simulation of the highway merge scenario by including the lane-change reaction in addition to yielding behavior of main-lane lag vehicles, and we evaluate two different models for their ability to capture this reactive lane-change behavior. To tune the payoff functions of these models, a novel naturalistic dataset was collected on U.S. highways that provided several hours of merge-specific data to learn the lane change behavior of U.S. drivers. To make sure that we are collecting a representative set of different U.S. highway geometries in our data, we surveyed 50,000 U.S. highway on-ramps and then selected eight representative sites. The data were collected using roadside-mounted lidar sensors to capture various merge driver interactions. The models were demonstrated to be configurable for both keep-straight and lane-change behavior. The models were finally integrated into a high-fidelity simulation environment and confirmed to have adequate computation time efficiency for use in large-scale simulations to support autonomous vehicle development.
Abstract:Merging into dense highway traffic for an autonomous vehicle is a complex decision-making task, wherein the vehicle must identify a potential gap and coordinate with surrounding human drivers, each of whom may exhibit diverse driving behaviors. Many existing methods consider other drivers to be dynamic obstacles and, as a result, are incapable of capturing the full intent of the human drivers via this passive planning. In this paper, we propose a novel dual control framework based on Model Predictive Path-Integral control to generate interactive trajectories. This framework incorporates a Bayesian inference approach to actively learn the agents' parameters, i.e., other drivers' model parameters. The proposed framework employs a sampling-based approach that is suitable for real-time implementation through the utilization of GPUs. We illustrate the effectiveness of our proposed methodology through comprehensive numerical simulations conducted in both high and low-fidelity simulation scenarios focusing on autonomous on-ramp merging.