Abstract:We present a fast generative modeling approach for resistive memories that reproduces the complex statistical properties of real-world devices. To enable efficient modeling of analog circuits, the model is implemented in Verilog-A. By training on extensive measurement data of integrated 1T1R arrays (6,000 cycles of 512 devices), an autoregressive stochastic process accurately accounts for the cross-correlations between the switching parameters, while non-linear transformations ensure agreement with both cycle-to-cycle (C2C) and device-to-device (D2D) variability. Benchmarks show that this statistically comprehensive model achieves read/write throughputs exceeding those of even highly simplified and deterministic compact models.
Abstract:Scanning tunneling and atomic force microscopies (STM/nc-AFM) are rapidly progressing to offer unprecedented spatial resolution of a diverse array of chemical species. In particular, they are employed to characterize on-surface chemical reactions by directly examining precursors and products. Chiral effects and self-assembled structures can also be investigated. This open source, modular, python based scheme automates the categorization of a variety of molecules present in medium sized (10$\times$10 to 100$\times$100 nm) scanned probe images.