Abstract:The generative pre-trained transformer (GPT)-based chatbot software ChatGPT possesses excellent natural language processing capabilities but is inadequate for solving arithmetic problems, especially multiplication. Its GPT structure uses a computational graph for multiplication, which has limited accuracy beyond simple multiplication operations. We developed a graph-based multiplication algorithm that emulated human-like numerical operations by incorporating a 10k operator, where k represents the maximum power to base 10 of the larger of two input numbers. Our proposed algorithm attained 100% accuracy for 1,000,000 large number multiplication tasks, effectively solving the multiplication challenge of GPT-based and other large language models. Our work highlights the importance of blending simple human insights into the design of artificial intelligence algorithms. Keywords: Graph-based multiplication; ChatGPT; Multiplication problem
Abstract:Background: Skin cancer is one of the widely seen cancer worldwide and automatic classification of skin cancer can be benefited dermatology clinics for an accurate diagnosis. Hence, a machine learning-based automatic skin cancer detection model must be developed. Material and Method: This research interests to overcome automatic skin cancer detection problem. A colored skin cancer image dataset is used. This dataset contains 3297 images with two classes. An automatic multilevel textural and deep features-based model is presented. Multilevel fuse feature generation using discrete wavelet transform (DWT), local phase quantization (LPQ), local binary pattern (LBP), pre-trained DarkNet19, and DarkNet53 are utilized to generate features of the skin cancer images, top 1000 features are selected threshold value-based neighborhood component analysis (NCA). The chosen top 1000 features are classified using the 10-fold cross-validation technique. Results: To obtain results, ten-fold cross-validation is used and 91.54% classification accuracy results are obtained by using the recommended pyramidal hybrid feature generator and NCA selector-based model. Further, various training and testing separation ratios (90:10, 80:20, 70:30, 60:40, 50:50) are used and the maximum classification rate is calculated as 95.74% using the 90:10 separation ratio. Conclusions: The findings and accuracies calculated are denoted that this model can be used in dermatology and pathology clinics to simplify the skin cancer detection process and help physicians.
Abstract:Particle swarm optimization (PSO) and Sine Cosine algorithm (SCA) have been widely used optimization methods but these methods have some disadvantages such as trapped local optimum point. In order to solve this problem and obtain more successful results than others, a novel logistic dynamic weight based sine cosine search algorithm (LDW-SCSA) is presented in this paper. In the LDW-SCSA method, logistic map is used as dynamic weight generator. Logistic map is one of the famous and widely used chaotic map in the literature. Search process of SCA is modified in the LDW-SCSA. To evaluate performance of the LDW-SCSA, the widely used numerical benchmark functions were utilized as test suite and other swarm optimization methods were used to obtain the comparison results. Superior performances of the LDW-SCSA are proved success of this method.