Abstract:Colorectal cancer (CRC) is the first cause of death in many countries. CRC originates from a small clump of cells on the lining of the colon called polyps, which over time might grow and become malignant. Early detection and removal of polyps are therefore necessary for the prevention of colon cancer. In this paper, we introduce an ensemble of medical polyp segmentation algorithms. Based on an observation that different segmentation algorithms will perform well on different subsets of examples because of the nature and size of training sets they have been exposed to and because of method-intrinsic factors, we propose to measure the confidence in the prediction of each algorithm and then use an associate threshold to determine whether the confidence is acceptable or not. An algorithm is selected for the ensemble if the confidence is below its associate threshold. The optimal threshold for each segmentation algorithm is found by using Comprehensive Learning Particle Swarm Optimization (CLPSO), a swarm intelligence algorithm. The Dice coefficient, a popular performance metric for image segmentation, is used as the fitness criteria. Experimental results on two polyp segmentation datasets MICCAI2015 and Kvasir-SEG confirm that our ensemble achieves better results compared to some well-known segmentation algorithms.
Abstract:In recent years, deep learning has rapidly become a method of choice for the segmentation of medical images. Deep Neural Network (DNN) architectures such as UNet have achieved state-of-the-art results on many medical datasets. To further improve the performance in the segmentation task, we develop an ensemble system which combines various deep learning architectures. We propose a two-layer ensemble of deep learning models for the segmentation of medical images. The prediction for each training image pixel made by each model in the first layer is used as the augmented data of the training image for the second layer of the ensemble. The prediction of the second layer is then combined by using a weights-based scheme in which each model contributes differently to the combined result. The weights are found by solving linear regression problems. Experiments conducted on two popular medical datasets namely CAMUS and Kvasir-SEG show that the proposed method achieves better results concerning two performance metrics (Dice Coefficient and Hausdorff distance) compared to some well-known benchmark algorithms.