Abstract:In this work, we propose a novel learning-based method to jointly estimate the shape and subsurface scattering (SSS) parameters of translucent objects by utilizing polarization cues. Although polarization cues have been used in various applications, such as shape from polarization (SfP), BRDF estimation, and reflection removal, their application in SSS estimation has not yet been explored. Our observations indicate that the SSS affects not only the light intensity but also the polarization signal. Hence, the polarization signal can provide additional cues for SSS estimation. We also introduce the first large-scale synthetic dataset of polarized translucent objects for training our model. Our method outperforms several baselines from the SfP and inverse rendering realms on both synthetic and real data, as demonstrated by qualitative and quantitative results.
Abstract:In this work, we propose an inverse rendering model that estimates 3D shape, spatially-varying reflectance, homogeneous subsurface scattering parameters, and an environment illumination jointly from only a pair of captured images of a translucent object. In order to solve the ambiguity problem of inverse rendering, we use a physically-based renderer and a neural renderer for scene reconstruction and material editing. Because two renderers are differentiable, we can compute a reconstruction loss to assist parameter estimation. To enhance the supervision of the proposed neural renderer, we also propose an augmented loss. In addition, we use a flash and no-flash image pair as the input. To supervise the training, we constructed a large-scale synthetic dataset of translucent objects, which consists of 117K scenes. Qualitative and quantitative results on both synthetic and real-world datasets demonstrated the effectiveness of the proposed model.
Abstract:Lensless imaging protects visual privacy by capturing heavily blurred images that are imperceptible for humans to recognize the subject but contain enough information for machines to infer information. Unfortunately, protecting visual privacy comes with a reduction in recognition accuracy and vice versa. We propose a learnable lensless imaging framework that protects visual privacy while maintaining recognition accuracy. To make captured images imperceptible to humans, we designed several loss functions based on total variation, invertibility, and the restricted isometry property. We studied the effect of privacy protection with blurriness on the identification of personal identity via a quantitative method based on a subjective evaluation. Moreover, we validate our simulation by implementing a hardware realization of lensless imaging with photo-lithographically printed masks.