Abstract:Retrieval augmented generation (RAG) systems augment how knowledge language models are by integrating external information sources such as Wikipedia, internal documents, scientific papers, or the open internet. RAG systems that rely on the open internet as their knowledge source have to contend with the complexities of human-generated content. Human communication extends much deeper than just the words rendered as text. Intent, tonality, and connotation can all change the meaning of what is being conveyed. Recent real-world deployments of RAG systems have shown some difficulty in understanding these nuances of human communication. One significant challenge for these systems lies in processing sarcasm. Though the Large Language Models (LLMs) that make up the backbone of these RAG systems are able to detect sarcasm, they currently do not always use these detections for the subsequent processing of text. To address these issues, in this paper, we synthetically generate sarcastic passages from Natural Question's Wikipedia retrieval corpus. We then test the impact of these passages on the performance of both the retriever and reader portion of the RAG pipeline. We introduce a prompting system designed to enhance the model's ability to interpret and generate responses in the presence of sarcasm, thus improving overall system performance. Finally, we conduct ablation studies to validate the effectiveness of our approach, demonstrating improvements in handling sarcastic content within RAG systems.
Abstract:This study analyzes changes in the attention mechanisms of large language models (LLMs) when used to understand natural conversations between humans (human-human). We analyze three use cases of LLMs: interactions over web content, code, and mathematical texts. By analyzing attention distance, dispersion, and interdependency across these domains, we highlight the unique challenges posed by conversational data. Notably, conversations require nuanced handling of long-term contextual relationships and exhibit higher complexity through their attention patterns. Our findings reveal that while language models exhibit domain-specific attention behaviors, there is a significant gap in their ability to specialize in human conversations. Through detailed attention entropy analysis and t-SNE visualizations, we demonstrate the need for models trained with a diverse array of high-quality conversational data to enhance understanding and generation of human-like dialogue. This research highlights the importance of domain specialization in language models and suggests pathways for future advancement in modeling human conversational nuances.