Abstract:This study investigates the use of Large Language Models (LLMs) for political stance detection in informal online discourse, where language is often sarcastic, ambiguous, and context-dependent. We explore whether providing contextual information, specifically user profile summaries derived from historical posts, can improve classification accuracy. Using a real-world political forum dataset, we generate structured profiles that summarize users' ideological leaning, recurring topics, and linguistic patterns. We evaluate seven state-of-the-art LLMs across baseline and context-enriched setups through a comprehensive cross-model evaluation. Our findings show that contextual prompts significantly boost accuracy, with improvements ranging from +17.5\% to +38.5\%, achieving up to 74\% accuracy that surpasses previous approaches. We also analyze how profile size and post selection strategies affect performance, showing that strategically chosen political content yields better results than larger, randomly selected contexts. These findings underscore the value of incorporating user-level context to enhance LLM performance in nuanced political classification tasks.
Abstract:Identifying cohorts of patients based on eligibility criteria such as medical conditions, procedures, and medication use is critical to recruitment for clinical trials. Such criteria are often most naturally described in free-text, using language familiar to clinicians and researchers. In order to identify potential participants at scale, these criteria must first be translated into queries on clinical databases, which can be labor-intensive and error-prone. Natural language processing (NLP) methods offer a potential means of such conversion into database queries automatically. However they must first be trained and evaluated using corpora which capture clinical trials criteria in sufficient detail. In this paper, we introduce the Leaf Clinical Trials (LCT) corpus, a human-annotated corpus of over 1,000 clinical trial eligibility criteria descriptions using highly granular structured labels capturing a range of biomedical phenomena. We provide details of our schema, annotation process, corpus quality, and statistics. Additionally, we present baseline information extraction results on this corpus as benchmarks for future work.