Abstract:In this paper, techniques for improving multichannel lossless coding are examined. A method is proposed for the simultaneous coding of two or more different renderings (mixes) of the same content. The signal model uses both past samples of the upmix, and the current time samples of downmix samples to predict the upmix. Model parameters are optimized via a general linear solver, and the prediction residual is Rice coded. Additionally, the use of an SVD projection prior to residual coding is proposed. A comparison is made against various baselines, including FLAC. The proposed methods show improved compression ratios for the storage and transmission of immersive audio.
Abstract:In recent years, the task of Automatic Music Transcription (AMT), whereby various attributes of music notes are estimated from audio, has received increasing attention. At the same time, the related task of Multi-Pitch Estimation (MPE) remains a challenging but necessary component of almost all AMT approaches, even if only implicitly. In the context of AMT, pitch information is typically quantized to the nominal pitches of the Western music scale. Even in more general contexts, MPE systems typically produce pitch predictions with some degree of quantization. In certain applications of AMT, such as Guitar Tablature Transcription (GTT), it is more meaningful to estimate continuous-valued pitch contours. Guitar tablature has the capacity to represent various playing techniques, some of which involve pitch modulation. Contemporary approaches to AMT do not adequately address pitch modulation, and offer only less quantization at the expense of more model complexity. In this paper, we present a GTT formulation that estimates continuous-valued pitch contours, grouping them according to their string and fret of origin. We demonstrate that for this task, the proposed method significantly improves the resolution of MPE and simultaneously yields tablature estimation results competitive with baseline models.