Abstract:We study the problem of generating a training-free task-dependent visual classifier from text descriptions without visual samples. This \textit{Text-to-Model} (T2M) problem is closely related to zero-shot learning, but unlike previous work, a T2M model infers a model tailored to a task, taking into account all classes in the task. We analyze the symmetries of T2M, and characterize the equivariance and invariance properties of corresponding models. In light of these properties, we design an architecture based on hypernetworks that given a set of new class descriptions predicts the weights for an object recognition model which classifies images from those zero-shot classes. We demonstrate the benefits of our approach compared to zero-shot learning from text descriptions in image and point-cloud classification using various types of text descriptions: From single words to rich text descriptions.
Abstract:While Natural Language Processing (NLP) algorithms keep reaching unprecedented milestones, out-of-distribution generalization is still challenging. In this paper we address the problem of multi-source adaptation to unknown domains: Given labeled data from multiple source domains, we aim to generalize to data drawn from target domains that are unknown to the algorithm at training time. We present an algorithmic framework based on example-based Hypernetwork adaptation: Given an input example, a T5 encoder-decoder first generates a unique signature which embeds this example in the semantic space of the source domains, and this signature is then fed into a Hypernetwork which generates the weights of the task classifier. In an advanced version of our model, the learned signature also serves for improving the representation of the input example. In experiments with two tasks, sentiment classification and natural language inference, across 29 adaptation settings, our algorithms substantially outperform existing algorithms for this adaptation setup. To the best of our knowledge, this is the first time Hypernetworks are applied to domain adaptation or in example-based manner in NLP.