Abstract:A major challenge in the segmentation of medical images is the large inter- and intra-observer variability in annotations provided by multiple experts. To address this challenge, we propose a novel method for multi-expert prediction using diffusion models. Our method leverages the diffusion-based approach to incorporate information from multiple annotations and fuse it into a unified segmentation map that reflects the consensus of multiple experts. We evaluate the performance of our method on several datasets of medical segmentation annotated by multiple experts and compare it with state-of-the-art methods. Our results demonstrate the effectiveness and robustness of the proposed method. Our code is publicly available at https://github.com/tomeramit/Annotator-Consensus-Prediction.
Abstract:Diffusion Probabilistic Methods are employed for state-of-the-art image generation. In this work, we present a method for extending such models for performing image segmentation. The method learns end-to-end, without relying on a pre-trained backbone. The information in the input image and in the current estimation of the segmentation map is merged by summing the output of two encoders. Additional encoding layers and a decoder are then used to iteratively refine the segmentation map using a diffusion model. Since the diffusion model is probabilistic, it is applied multiple times and the results are merged into a final segmentation map. The new method obtains state-of-the-art results on the Cityscapes validation set, the Vaihingen building segmentation benchmark, and the MoNuSeg dataset.