Abstract:Machine learning is revolutionizing global weather forecasting, with models that efficiently produce highly accurate forecasts. Apart from global forecasting there is also a large value in high-resolution regional weather forecasts, focusing on accurate simulations of the atmosphere for a limited area. Initial attempts have been made to use machine learning for such limited area scenarios, but these experiments do not consider realistic forecasting settings and do not investigate the many design choices involved. We present a framework for building kilometer-scale machine learning limited area models with boundary conditions imposed through a flexible boundary forcing method. This enables boundary conditions defined either from reanalysis or operational forecast data. Our approach employs specialized graph constructions with rectangular and triangular meshes, along with multi-step rollout training strategies to improve temporal consistency. We perform systematic evaluation of different design choices, including the boundary width, graph construction and boundary forcing integration. Models are evaluated across both a Danish and a Swiss domain, two regions that exhibit different orographical characteristics. Verification is performed against both gridded analysis data and in-situ observations, including a case study for the storm Ciara in February 2020. Both models achieve skillful predictions across a wide range of variables, with our Swiss model outperforming the numerical weather prediction baseline for key surface variables. With their substantially lower computational cost, our findings demonstrate great potential for machine learning limited area models in the future of regional weather forecasting.
Abstract:Machine learning methods have been shown to be effective for weather forecasting, based on the speed and accuracy compared to traditional numerical models. While early efforts primarily concentrated on deterministic predictions, the field has increasingly shifted toward probabilistic forecasting to better capture the forecast uncertainty. Most machine learning-based models have been designed for global-scale predictions, with only limited work targeting regional or limited area forecasting, which allows more specialized and flexible modeling for specific locations. This work introduces Diffusion-LAM, a probabilistic limited area weather model leveraging conditional diffusion. By conditioning on boundary data from surrounding regions, our approach generates forecasts within a defined area. Experimental results on the MEPS limited area dataset demonstrate the potential of Diffusion-LAM to deliver accurate probabilistic forecasts, highlighting its promise for limited-area weather prediction.
Abstract:Weather forecasting has seen a shift in methods from numerical simulations to data-driven systems. While initial research in the area focused on deterministic forecasting, recent works have used diffusion models to produce skillful ensemble forecasts. These models are trained on a single forecasting step and rolled out autoregressively. However, they are computationally expensive and accumulate errors for high temporal resolution due to the many rollout steps. We address these limitations with Continuous Ensemble Forecasting, a novel and flexible method for sampling ensemble forecasts in diffusion models. The method can generate temporally consistent ensemble trajectories completely in parallel, with no autoregressive steps. Continuous Ensemble Forecasting can also be combined with autoregressive rollouts to yield forecasts at an arbitrary fine temporal resolution without sacrificing accuracy. We demonstrate that the method achieves competitive results for global weather forecasting with good probabilistic properties.
Abstract:In recent years, machine learning has established itself as a powerful tool for high-resolution weather forecasting. While most current machine learning models focus on deterministic forecasts, accurately capturing the uncertainty in the chaotic weather system calls for probabilistic modeling. We propose a probabilistic weather forecasting model called Graph-EFM, combining a flexible latent-variable formulation with the successful graph-based forecasting framework. The use of a hierarchical graph construction allows for efficient sampling of spatially coherent forecasts. Requiring only a single forward pass per time step, Graph-EFM allows for fast generation of arbitrarily large ensembles. We experiment with the model on both global and limited area forecasting. Ensemble forecasts from Graph-EFM achieve equivalent or lower errors than comparable deterministic models, with the added benefit of accurately capturing forecast uncertainty.
Abstract:The rise of accurate machine learning methods for weather forecasting is creating radical new possibilities for modeling the atmosphere. In the time of climate change, having access to high-resolution forecasts from models like these is also becoming increasingly vital. While most existing Neural Weather Prediction (NeurWP) methods focus on global forecasting, an important question is how these techniques can be applied to limited area modeling. In this work we adapt the graph-based NeurWP approach to the limited area setting and propose a multi-scale hierarchical model extension. Our approach is validated by experiments with a local model for the Nordic region.