Abstract:Leveraging research on the neural modelling of Portuguese, we contribute a collection of datasets for an array of language processing tasks and a corresponding collection of fine-tuned neural language models on these downstream tasks. To align with mainstream benchmarks in the literature, originally developed in English, and to kick start their Portuguese counterparts, the datasets were machine-translated from English with a state-of-the-art translation engine. The resulting PORTULAN ExtraGLUE benchmark is a basis for research on Portuguese whose improvement can be pursued in future work. Similarly, the respective fine-tuned neural language models, developed with a low-rank adaptation approach, are made available as baselines that can stimulate future work on the neural processing of Portuguese. All datasets and models have been developed and are made available for two variants of Portuguese: European and Brazilian.
Abstract:To advance the neural encoding of Portuguese (PT), and a fortiori the technological preparation of this language for the digital age, we developed a Transformer-based foundation model that sets a new state of the art in this respect for two of its variants, namely European Portuguese from Portugal (PT-PT) and American Portuguese from Brazil (PT-BR). To develop this encoder, which we named Albertina PT-*, a strong model was used as a starting point, DeBERTa, and its pre-training was done over data sets of Portuguese, namely over a data set we gathered for PT-PT and over the brWaC corpus for PT-BR. The performance of Albertina and competing models was assessed by evaluating them on prominent downstream language processing tasks adapted for Portuguese. Both Albertina PT-PT and PT-BR versions are distributed free of charge and under the most permissive license possible and can be run on consumer-grade hardware, thus seeking to contribute to the advancement of research and innovation in language technology for Portuguese.