Abstract:With the long term accumulation of high quality educational data, artificial intelligence has shown excellent performance in knowledge tracing. However, due to the lack of interpretability and transparency of some algorithms, this approach will result in reduced stakeholder trust and a decreased acceptance of intelligent decisions. Therefore, algorithms need to achieve high accuracy, and users need to understand the internal operating mechanism and provide reliable explanations for decisions. This paper thoroughly analyzes the interpretability of KT algorithms. First, the concepts and common methods of explainable artificial intelligence and knowledge tracing are introduced. Next, explainable knowledge tracing models are classified into two categories: transparent models and black box models. Then, the interpretable methods used are reviewed from three stages: ante hoc interpretable methods, post hoc interpretable methods, and other dimensions. It is worth noting that current evaluation methods for explainable knowledge tracing are lacking. Hence, contrast and deletion experiments are conducted to explain the prediction results of the deep knowledge tracing model on the ASSISTment2009 by using three XAI methods. Moreover, this paper offers some insights into evaluation methods from the perspective of educational stakeholders. This paper provides a detailed and comprehensive review of the research on explainable knowledge tracing, aiming to offer some basis and inspiration for researchers interested in the interpretability of knowledge tracing.
Abstract:Detecting stereotypes and biases in Large Language Models (LLMs) can enhance fairness and reduce adverse impacts on individuals or groups when these LLMs are applied. However, the majority of existing methods focus on measuring the model's preference towards sentences containing biases and stereotypes within datasets, which lacks interpretability and cannot detect implicit biases and stereotypes in the real world. To address this gap, this paper introduces a four-stage framework to directly evaluate stereotypes and biases in the generated content of LLMs, including direct inquiry testing, serial or adapted story testing, implicit association testing, and unknown situation testing. Additionally, the paper proposes multi-dimensional evaluation metrics and explainable zero-shot prompts for automated evaluation. Using the education sector as a case study, we constructed the Edu-FairBench based on the four-stage framework, which encompasses 12,632 open-ended questions covering nine sensitive factors and 26 educational scenarios. Experimental results reveal varying degrees of stereotypes and biases in five LLMs evaluated on Edu-FairBench. Moreover, the results of our proposed automated evaluation method have shown a high correlation with human annotations.