Abstract:In emergencies, high stake decisions often have to be made under time pressure and strain. In order to support such decisions, information from various sources needs to be collected and processed rapidly. The information available tends to be temporally and spatially variable, uncertain, and sometimes conflicting, leading to potential biases in decisions. Currently, there is a lack of systematic approaches for information processing and situation assessment which meet the particular demands of emergency situations. To address this gap, we present a Bayesian network-based method called ERIMap that is tailored to the complex information-scape during emergencies. The method enables the systematic and rapid processing of heterogeneous and potentially uncertain observations and draws inferences about key variables of an emergency. It thereby reduces complexity and cognitive load for decision makers. The output of the ERIMap method is a dynamically evolving and spatially resolved map of beliefs about key variables of an emergency that is updated each time a new observation becomes available. The method is illustrated in a case study in which an emergency response is triggered by an accident causing a gas leakage on a chemical plant site.
Abstract:Along with climate change, more frequent extreme events, such as flooding and tropical cyclones, threaten the livelihoods and wellbeing of poor and vulnerable populations. One of the most immediate needs of people affected by a disaster is finding shelter. While the proliferation of data on disasters is already helping to save lives, identifying damages in buildings, assessing shelter needs, and finding appropriate places to establish emergency shelters or settlements require a wide range of data to be combined rapidly. To address this gap and make a headway in comprehensive assessments, this paper proposes a machine learning workflow that aims to fuse and rapidly analyse multimodal data. This workflow is built around open and online data to ensure scalability and broad accessibility. Based on a database of 19 characteristics for more than 200 disasters worldwide, a fusion approach at the decision level was used. This technique allows the collected multimodal data to share a common semantic space that facilitates the prediction of individual variables. Each fused numerical vector was fed into an unsupervised clustering algorithm called Self-Organizing-Maps (SOM). The trained SOM serves as a predictor for future cases, allowing predicting consequences such as total deaths, total people affected, and total damage, and provides specific recommendations for assessments in the shelter and housing sector. To achieve such prediction, a satellite image from before the disaster and the geographic and demographic conditions are shown to the trained model, which achieved a prediction accuracy of 62 %