Abstract:We propose SutraNets, a novel method for neural probabilistic forecasting of long-sequence time series. SutraNets use an autoregressive generative model to factorize the likelihood of long sequences into products of conditional probabilities. When generating long sequences, most autoregressive approaches suffer from harmful error accumulation, as well as challenges in modeling long-distance dependencies. SutraNets treat long, univariate prediction as multivariate prediction over lower-frequency sub-series. Autoregression proceeds across time and across sub-series in order to ensure coherent multivariate (and, hence, high-frequency univariate) outputs. Since sub-series can be generated using fewer steps, SutraNets effectively reduce error accumulation and signal path distances. We find SutraNets to significantly improve forecasting accuracy over competitive alternatives on six real-world datasets, including when we vary the number of sub-series and scale up the depth and width of the underlying sequence models.
Abstract:We present coarse-to-fine autoregressive networks (C2FAR), a method for modeling the probability distribution of univariate, numeric random variables. C2FAR generates a hierarchical, coarse-to-fine discretization of a variable autoregressively; progressively finer intervals of support are generated from a sequence of binned distributions, where each distribution is conditioned on previously-generated coarser intervals. Unlike prior (flat) binned distributions, C2FAR can represent values with exponentially higher precision, for only a linear increase in complexity. We use C2FAR for probabilistic forecasting via a recurrent neural network, thus modeling time series autoregressively in both space and time. C2FAR is the first method to simultaneously handle discrete and continuous series of arbitrary scale and distribution shape. This flexibility enables a variety of time series use cases, including anomaly detection, interpolation, and compression. C2FAR achieves improvements over the state-of-the-art on several benchmark forecasting datasets.