Abstract:In this work, we propose a swimming analytics system for automatically determining swimmer stroke rates from overhead race video (ORV). General ORV is defined as any footage of swimmers in competition, taken for the purposes of viewing or analysis. Examples of this are footage from live streams, broadcasts, or specialized camera equipment, with or without camera motion. These are the most typical forms of swimming competition footage. We detail how to create a system that will automatically collect swimmer stroke rates in any competition, given the video of the competition of interest. With this information, better systems can be created and additions to our analytics system can be proposed to automatically extract other swimming metrics of interest.
Abstract:Methods for creating a system to automate the collection of swimming analytics on a pool-wide scale are considered in this paper. There has not been much work on swimmer tracking or the creation of a swimmer database for machine learning purposes. Consequently, methods for collecting swimmer data from videos of swim competitions are explored and analyzed. The result is a guide to the creation of a comprehensive collection of swimming data suitable for training swimmer detection and tracking systems. With this database in place, systems can then be created to automate the collection of swimming analytics.