Abstract:Process-based hydrologic models are invaluable tools for understanding the terrestrial water cycle and addressing modern water resources problems. However, many hydrologic models are computationally expensive and, depending on the resolution and scale, simulations can take on the order of hours to days to complete. While techniques such as uncertainty quantification and optimization have become valuable tools for supporting management decisions, these analyses typically require hundreds of model simulations, which are too computationally expensive to perform with a process-based hydrologic model. To address this gap, we propose a hybrid modeling workflow in which a process-based model is used to generate an initial set of simulations and a machine learning (ML) surrogate model is then trained to perform the remaining simulations required for downstream analysis. As a case study, we apply this workflow to simulations of variably saturated groundwater flow at a prospective managed aquifer recharge (MAR) site. We compare the accuracy and computational efficiency of several ML architectures, including deep convolutional networks, recurrent neural networks, vision transformers, and networks with Fourier transforms. Our results demonstrate that ML surrogate models can achieve under 10% mean absolute percentage error and yield order-of-magnitude runtime savings over processed-based models. We also offer practical recommendations for training hydrologic surrogate models, including implementing data normalization to improve accuracy, using a normalized loss function to improve training stability and downsampling input features to decrease memory requirements.
Abstract:Neighborhood gentrification plays a significant role in shaping the social and economic well-being of both individuals and communities at large. While some efforts have been made to detect gentrification in cities, existing approaches rely mainly on estimated measures from survey data, require substantial work of human labeling, and are limited in characterizing the neighborhood as a whole. We propose a novel approach to detecting neighborhood gentrification at a large-scale based on the physical appearance of neighborhoods by incorporating historical street-level visual data. We show the effectiveness of the proposed method by comparing results from our approach with gentrification measures from previous literature and case studies. Our approach has the potential to supplement existing indicators of gentrification and become a valid resource for urban researchers and policy makers.