Abstract:The rapid entry of machine learning approaches in our daily activities and high-stakes domains demands transparency and scrutiny of their fairness and reliability. To help gauge machine learning models' robustness, research typically focuses on the massive datasets used for their deployment, e.g., creating and maintaining documentation for understanding their origin, process of development, and ethical considerations. However, data collection for AI is still typically a one-off practice, and oftentimes datasets collected for a certain purpose or application are reused for a different problem. Additionally, dataset annotations may not be representative over time, contain ambiguous or erroneous annotations, or be unable to generalize across issues or domains. Recent research has shown these practices might lead to unfair, biased, or inaccurate outcomes. We argue that data collection for AI should be performed in a responsible manner where the quality of the data is thoroughly scrutinized and measured through a systematic set of appropriate metrics. In this paper, we propose a Responsible AI (RAI) methodology designed to guide the data collection with a set of metrics for an iterative in-depth analysis of the factors influencing the quality and reliability} of the generated data. We propose a granular set of measurements to inform on the internal reliability of a dataset and its external stability over time. We validate our approach across nine existing datasets and annotation tasks and four content modalities. This approach impacts the assessment of data robustness used for AI applied in the real world, where diversity of users and content is eminent. Furthermore, it deals with fairness and accountability aspects in data collection by providing systematic and transparent quality analysis for data collections.
Abstract:Support or opposition concerning a debated claim such as abortion should be legal can have different underlying reasons, which we call perspectives. This paper explores how opinion mining can be enhanced with joint topic modeling, to identify distinct perspectives within the topic, providing an informative overview from unstructured text. We evaluate four joint topic models (TAM, JST, VODUM, and LAM) in a user study assessing human understandability of the extracted perspectives. Based on the results, we conclude that joint topic models such as TAM can discover perspectives that align with human judgments. Moreover, our results suggest that users are not influenced by their pre-existing stance on the topic of abortion when interpreting the output of topic models.