Abstract:We consider the multi-target detection problem of estimating a two-dimensional target image from a large noisy measurement image that contains many randomly rotated and translated copies of the target image. Motivated by single-particle cryo-electron microscopy, we focus on the low signal-to-noise regime, where it is difficult to estimate the locations and orientations of the target images in the measurement. Our approach uses autocorrelation analysis to estimate rotationally and translationally invariant features of the target image. We demonstrate that, regardless of the level of noise, our technique can be used to recover the target image when the measurement is sufficiently large.
Abstract:We introduce a framework for recovering an image from its rotationally and translationally invariant features based on autocorrelation analysis. This work is an instance of the multi-target detection statistical model, which is mainly used to study the mathematical and computational properties of single-particle reconstruction using cryo-electron microscopy (cryo-EM) at low signal-to-noise ratios. We demonstrate with synthetic numerical experiments that an image can be reconstructed from rotationally and translationally invariant features and show that the reconstruction is robust to noise. These results constitute an important step towards the goal of structure determination of small biomolecules using cryo-EM.