Abstract:Given the global prevalence of cardiovascular diseases, there is a pressing need for easily accessible early screening methods. Typically, this requires medical practitioners to investigate heart auscultations for irregular sounds, followed by echocardiography and electrocardiography tests. To democratize early diagnosis, we present a user-friendly solution for abnormal heart sound detection, utilizing mobile phones and a lightweight neural network optimized for on-device inference. Unlike previous approaches reliant on specialized stethoscopes, our method directly analyzes audio recordings, facilitated by a novel architecture known as IConNet. IConNet, an Interpretable Convolutional Neural Network, harnesses insights from audio signal processing, enhancing efficiency and providing transparency in neural pattern extraction from raw waveform signals. This is a significant step towards trustworthy AI in healthcare, aiding in remote health monitoring efforts.
Abstract:This paper introduces a novel convolutional neural networks (CNN) framework tailored for end-to-end audio deep learning models, presenting advancements in efficiency and explainability. By benchmarking experiments on three standard speech emotion recognition datasets with five-fold cross-validation, our framework outperforms Mel spectrogram features by up to seven percent. It can potentially replace the Mel-Frequency Cepstral Coefficients (MFCC) while remaining lightweight. Furthermore, we demonstrate the efficiency and interpretability of the front-end layer using the PhysioNet Heart Sound Database, illustrating its ability to handle and capture intricate long waveform patterns. Our contributions offer a portable solution for building efficient and interpretable models for raw waveform data.