Abstract:The Blackbird unmanned aerial vehicle (UAV) dataset is a large-scale, aggressive indoor flight dataset collected using a custom-built quadrotor platform for use in evaluation of agile perception.Inspired by the potential of future high-speed fully-autonomous drone racing, the Blackbird dataset contains over 10 hours of flight data from 168 flights over 17 flight trajectories and 5 environments at velocities up to $7.0ms^-1$. Each flight includes sensor data from 120Hz stereo and downward-facing photorealistic virtual cameras, 100Hz IMU, $\sim190Hz$ motor speed sensors, and 360Hz millimeter-accurate motion capture ground truth. Camera images for each flight were photorealistically rendered using FlightGoggles across a variety of environments to facilitate easy experimentation of high performance perception algorithms. The dataset is available for download at http://blackbird-dataset.mit.edu/
Abstract:Most existing motion planning algorithms assume that a map (of some quality) is fully determined prior to generating a motion plan. In many emerging applications of robotics, e.g., fast-moving agile aerial robots with constrained embedded computational platforms and visual sensors, dense maps of the world are not immediately available, and they are computationally expensive to construct. We propose a new algorithm for generating plan graphs which couples the perception and motion planning processes for computational efficiency. In a nutshell, the proposed algorithm iteratively switches between the planning sub-problem and the mapping sub-problem, each updating based on the other until a valid trajectory is found. The resulting trajectory retains a provable property of providing an optimal trajectory with respect to the full (unmapped) environment, while utilizing only a fraction of the sensing data in computational experiments.