Abstract:The increasing complexity of deep neural networks (DNNs) poses significant challenges for edge inference deployment due to resource and power constraints of edge devices. Recent works on unary-based matrix multiplication hardware aim to leverage data sparsity and low-precision values to enhance hardware efficiency. However, the adoption and integration of such unary hardware into commercial deep learning accelerators (DLA) remain limited due to processing element (PE) array dataflow differences. This work presents Tempus Core, a convolution core with highly scalable unary-based PE array comprising of tub (temporal-unary-binary) multipliers that seamlessly integrates with the NVDLA (NVIDIA's open-source DLA for accelerating CNNs) while maintaining dataflow compliance and boosting hardware efficiency. Analysis across various datapath granularities shows that for INT8 precision in 45nm CMOS, Tempus Core's PE cell unit (PCU) yields 59.3% and 15.3% reductions in area and power consumption, respectively, over NVDLA's CMAC unit. Considering a 16x16 PE array in Tempus Core, area and power improves by 75% and 62%, respectively, while delivering 5x and 4x iso-area throughput improvements for INT8 and INT4 precisions. Post-place and route analysis of Tempus Core's PCU shows that the 16x4 PE array for INT4 precision in 45nm CMOS requires only 0.017 mm^2 die area and consumes only 6.2mW of total power. We demonstrate that area-power efficient unary-based hardware can be seamlessly integrated into conventional DLAs, paving the path for efficient unary hardware for edge AI inference.
Abstract:The use of electronic cigarette (e-cigarette) is increasing among adolescents. This is problematic since consuming nicotine at an early age can cause harmful effects in developing teenager's brain and health. Additionally, the use of e-cigarette has a possibility of leading to the use of cigarettes, which is more severe. There were many researches about e-cigarette and cigarette that mostly focused on finding and analyzing causes of smoking using conventional statistics. However, there is a lack of research on developing prediction models, which is more applicable to anti-smoking campaign, about e-cigarette and cigarette. In this paper, we research the prediction models that can be used to predict an individual e-cigarette user's (including non-e-cigarette users) intention to smoke cigarettes, so that one can be early informed about the risk of going down the path of smoking cigarettes. To construct the prediction models, five machine learning (ML) algorithms are exploited and tested for their accuracy in predicting the intention to smoke cigarettes among never smokers using data from the 2018 National Youth Tobacco Survey (NYTS). In our investigation, the Gradient Boosting Classifier, one of the prediction models, shows the highest accuracy out of all the other models. Also, with the best prediction model, we made a public website that enables users to input information to predict their intentions of smoking cigarettes.