Maynooth University
Abstract:The increased reliance of self-driving vehicles on neural networks opens up the challenge of their verification. In this paper we present an experience report, describing a case study which we undertook to explore the design and training of a neural network on a custom dataset for vision-based autonomous navigation. We are particularly interested in the use of machine learning with differentiable logics to obtain networks satisfying basic safety properties by design, guaranteeing the behaviour of the neural network after training. We motivate the choice of a suitable neural network verifier for our purposes and report our observations on the use of neural network verifiers for self-driving systems.
Abstract:Extensive research on formal verification of machine learning (ML) systems indicates that learning from data alone often fails to capture underlying background knowledge. A variety of verifiers have been developed to ensure that a machine-learnt model satisfies correctness and safety properties, however, these verifiers typically assume a trained network with fixed weights. ML-enabled autonomous systems are required to not only detect incorrect predictions, but should also possess the ability to self-correct, continuously improving and adapting. A promising approach for creating ML models that inherently satisfy constraints is to encode background knowledge as logical constraints that guide the learning process via so-called differentiable logics. In this research preview, we compare and evaluate various logics from the literature in weakly-supervised contexts, presenting our findings and highlighting open problems for future work. Our experimental results are broadly consistent with results reported previously in literature; however, learning with differentiable logics introduces a new hyperparameter that is difficult to tune and has significant influence on the effectiveness of the logics.