Abstract:Significant progress has been made towards deploying Vehicle-to-Everything (V2X) technology. Integrating V2X with 5G has enabled ultra-low latency and high-reliability V2X communications. However, while communication performance has enhanced, security and privacy issues have increased. Attacks have become more aggressive, and attackers have become more strategic. Public Key Infrastructure proposed by standardization bodies cannot solely defend against these attacks. Thus, in complementary of that, sophisticated systems should be designed to detect such attacks and attackers. Machine Learning (ML) has recently emerged as a key enabler to secure our future roads. Many V2X Misbehavior Detection Systems (MDSs) have adopted this paradigm. Yet, analyzing these systems is a research gap, and developing effective ML-based MDSs is still an open issue. To this end, this paper present a comprehensive survey and classification of ML-based MDSs. We analyze and discuss them from both security and ML perspectives. Then, we give some learned lessons and recommendations helping in developing, validating, and deploying ML-based MDSs. Finally, we highlight open research and standardization issues with some future directions.
Abstract:In recent years, a lot of research has been conducted within the area of causal inference and causal learning. Many methods have been developed to identify the cause-effect pairs in models and have been successfully applied to observational real-world data to determine the direction of causal relationships. Yet in bivariate situations, causal discovery problems remain challenging. One class of such methods, that also allows tackling the bivariate case, is based on Additive Noise Models (ANMs). Unfortunately, one aspect of these methods has not received much attention until now: what is the impact of different noise levels on the ability of these methods to identify the direction of the causal relationship. This work aims to bridge this gap with the help of an empirical study. We test Regression with Subsequent Independence Test (RESIT) using an exhaustive range of models where the level of additive noise gradually changes from 1\% to 10000\% of the causes' noise level (the latter remains fixed). Additionally, the experiments in this work consider several different types of distributions as well as linear and non-linear models. The results of the experiments show that ANMs methods can fail to capture the true causal direction for some levels of noise.