Abstract:The Internet of Vehicles (IoV) is a crucial technology for Intelligent Transportation Systems (ITS) that integrates vehicles with the Internet and other entities. The emergence of 5G and the forthcoming 6G networks presents an enormous potential to transform the IoV by enabling ultra-reliable, low-latency, and high-bandwidth communications. Nevertheless, as connectivity expands, cybersecurity threats have become a significant concern. The issue has been further exacerbated by the rising number of zero-day (0-day) attacks, which can exploit unknown vulnerabilities and bypass existing Intrusion Detection Systems (IDSs). In this paper, we propose Zero-X, an innovative security framework that effectively detects both 0-day and N-day attacks. The framework achieves this by combining deep neural networks with Open-Set Recognition (OSR). Our approach introduces a novel scheme that uses blockchain technology to facilitate trusted and decentralized federated learning (FL) of the ZeroX framework. This scheme also prioritizes privacy preservation, enabling both CAVs and Security Operation Centers (SOCs) to contribute their unique knowledge while protecting the privacy of their sensitive data. To the best of our knowledge, this is the first work to leverage OSR in combination with privacy-preserving FL to identify both 0-day and N-day attacks in the realm of IoV. The in-depth experiments on two recent network traffic datasets show that the proposed framework achieved a high detection rate while minimizing the false positive rate. Comparison with related work showed that the Zero-X framework outperforms existing solutions.
Abstract:Deploying Connected and Automated Vehicles (CAVs) on top of 5G and Beyond networks (5GB) makes them vulnerable to increasing vectors of security and privacy attacks. In this context, a wide range of advanced machine/deep learning based solutions have been designed to accurately detect security attacks. Specifically, supervised learning techniques have been widely applied to train attack detection models. However, the main limitation of such solutions is their inability to detect attacks different from those seen during the training phase, or new attacks, also called zero-day attacks. Moreover, training the detection model requires significant data collection and labeling, which increases the communication overhead, and raises privacy concerns. To address the aforementioned limits, we propose in this paper a novel detection mechanism that leverages the ability of the deep auto-encoder method to detect attacks relying only on the benign network traffic pattern. Using federated learning, the proposed intrusion detection system can be trained with large and diverse benign network traffic, while preserving the CAVs privacy, and minimizing the communication overhead. The in-depth experiment on a recent network traffic dataset shows that the proposed system achieved a high detection rate while minimizing the false positive rate, and the detection delay.
Abstract:Significant progress has been made towards deploying Vehicle-to-Everything (V2X) technology. Integrating V2X with 5G has enabled ultra-low latency and high-reliability V2X communications. However, while communication performance has enhanced, security and privacy issues have increased. Attacks have become more aggressive, and attackers have become more strategic. Public Key Infrastructure proposed by standardization bodies cannot solely defend against these attacks. Thus, in complementary of that, sophisticated systems should be designed to detect such attacks and attackers. Machine Learning (ML) has recently emerged as a key enabler to secure our future roads. Many V2X Misbehavior Detection Systems (MDSs) have adopted this paradigm. Yet, analyzing these systems is a research gap, and developing effective ML-based MDSs is still an open issue. To this end, this paper present a comprehensive survey and classification of ML-based MDSs. We analyze and discuss them from both security and ML perspectives. Then, we give some learned lessons and recommendations helping in developing, validating, and deploying ML-based MDSs. Finally, we highlight open research and standardization issues with some future directions.