Abstract:For the validation and verification of automotive radars, datasets of realistic traffic scenarios are required, which, how ever, are laborious to acquire. In this paper, we introduce radar scene synthesis using GANs as an alternative to the real dataset acquisition and simulation-based approaches. We train a PointNet++ based GAN model to generate realistic radar point cloud scenes and use a binary classifier to evaluate the performance of scenes generated using this model against a test set of real scenes. We demonstrate that our GAN model achieves similar performance (~87%) to the real scenes test set.
Abstract:Due to its description of a synchronization between oscillators, the Kuramoto model is an ideal choice for a synchronisation algorithm in networked systems. This requires to achieve not only a frequency synchronization but also a phase synchronization - something the standard Kuramoto model can not provide for a finite number of agents. In this case, a remaining phase difference is necessary to offset differences of the natural frequencies. Setting the Kuramoto model into the context of dynamic consensus and making use of the $n$th order discrete average consensus algorithm, this paper extends the standard Kuramoto model in such a way that frequency and phase synchronization are separated. This in turn leads to an algorithm achieve the required frequency and phase synchronization also for a finite number of agents. Simulations show the viability of this extended Kuramoto model.