Abstract:For the validation and verification of automotive radars, datasets of realistic traffic scenarios are required, which, how ever, are laborious to acquire. In this paper, we introduce radar scene synthesis using GANs as an alternative to the real dataset acquisition and simulation-based approaches. We train a PointNet++ based GAN model to generate realistic radar point cloud scenes and use a binary classifier to evaluate the performance of scenes generated using this model against a test set of real scenes. We demonstrate that our GAN model achieves similar performance (~87%) to the real scenes test set.
Abstract:Automotive self-localization is an essential task for any automated driving function. This means that the vehicle has to reliably know its position and orientation with an accuracy of a few centimeters and degrees, respectively. This paper presents a radar-based approach to self-localization, which exploits fully polarimetric scattering information for robust landmark detection. The proposed method requires no input from sensors other than radar during localization for a given map. By association of landmark observations with map landmarks, the vehicle's position is inferred. Abstract point- and line-shaped landmarks allow for compact map sizes and, in combination with the factor graph formulation used, for an efficient implementation. Evaluation of extensive real-world experiments in diverse environments shows a promising overall localization performance of $0.12 \text{m}$ RMS absolute trajectory and $0.43 {}^\circ$ RMS heading error by leveraging the polarimetric information. A comparison of the performance of different levels of polarimetric information proves the advantage in challenging scenarios.