Abstract:Analytical quality assurance, especially testing, is an integral part of software-intensive system development. With the increased usage of Artificial Intelligence (AI) and Machine Learning (ML) as part of such systems, this becomes more difficult as well-understood software testing approaches cannot be applied directly to the AI-enabled parts of the system. The required adaptation of classical testing approaches and development of new concepts for AI would benefit from a deeper understanding and exchange between AI and software engineering experts. A major obstacle on this way, we see in the different terminologies used in the two communities. As we consider a mutual understanding of the testing terminology as a key, this paper contributes a mapping between the most important concepts from classical software testing and AI testing. In the mapping, we highlight differences in relevance and naming of the mapped concepts.