Abstract:Inspection of infrastructure using static sensor nodes has become a well established approach in recent decades. In this work, we present an experimental setup to address a binary inspection task using mobile sensor nodes. The objective is to identify the predominant tile type in a 1mx1m tiled surface composed of vibrating and non-vibrating tiles. A swarm of miniaturized robots, equipped with onboard IMUs for sensing and IR sensors for collision avoidance, performs the inspection. The decision-making approach leverages a Bayesian algorithm, updating robots' belief using inference. The original algorithm uses one of two information sharing strategies. We introduce a novel information sharing strategy, aiming to accelerate the decision-making. To optimize the algorithm parameters, we develop a simulation framework calibrated to our real-world setup in the high-fidelity Webots robotic simulator. We evaluate the three information sharing strategies through simulations and real-world experiments. Moreover, we test the effectiveness of our optimization by placing swarms with optimized and non-optimized parameters in increasingly complex environments with varied spatial correlation and fill ratios. Results show that our proposed information sharing strategy consistently outperforms previously established information-sharing strategies in decision time. Additionally, optimized parameters yield robust performance across different environments. Conversely, non-optimized parameters perform well in simpler scenarios but show reduced accuracy in complex settings.
Abstract:Robot swarms can effectively serve a variety of sensing and inspection applications. Certain inspection tasks require a binary classification decision. This work presents an experimental setup for a surface inspection task based on vibration sensing and studies a Bayesian two-outcome decision-making algorithm in a swarm of miniaturized wheeled robots. The robots are tasked with individually inspecting and collectively classifying a 1mx1m tiled surface consisting of vibrating and non-vibrating tiles based on the majority type of tiles. The robots sense vibrations using onboard IMUs and perform collision avoidance using a set of IR sensors. We develop a simulation and optimization framework leveraging the Webots robotic simulator and a Particle Swarm Optimization (PSO) method. We consider two existing information sharing strategies and propose a new one that allows the swarm to rapidly reach accurate classification decisions. We first find optimal parameters that allow efficient sampling in simulation and then evaluate our proposed strategy against the two existing ones using 100 randomized simulation and 10 real experiments. We find that our proposed method compels the swarm to make decisions at an accelerated rate, with an improvement of up to 20.52% in mean decision time at only 0.78% loss in accuracy.