Abstract:Input distribution shift presents a significant problem in many real-world systems. Here we present Xenovert, an adaptive algorithm that can dynamically adapt to changes in input distribution. It is a perfect binary tree that adaptively divides a continuous input space into several intervals of uniform density while receiving a continuous stream of input. This process indirectly maps the source distribution to the shifted target distribution, preserving the data's relationship with the downstream decoder/operation, even after the shift occurs. In this paper, we demonstrated how a neural network integrated with Xenovert achieved better results in 4 out of 5 shifted datasets, saving the hurdle of retraining a machine learning model. We anticipate that Xenovert can be applied to many more applications that require adaptation to unforeseen input distribution shifts, even when the distribution shift is drastic.
Abstract:Recent advances in text-to-image generators have led to substantial capabilities in image generation. However, the complexity of prompts acts as a bottleneck in the quality of images generated. A particular under-explored facet is the ability of generative models to create high-quality images comprising multiple components given as a prior. In this paper, we propose and validate a metric called Components Inclusion Score (CIS) to evaluate the extent to which a model can correctly generate multiple components. Our results reveal that the evaluated models struggle to incorporate all the visual elements from prompts with multiple components (8.53% drop in CIS per component for all evaluated models). We also identify a significant decline in the quality of the images and context awareness within an image as the number of components increased (15.91% decrease in inception Score and 9.62% increase in Frechet Inception Distance). To remedy this issue, we fine-tuned Stable Diffusion V2 on a custom-created test dataset with multiple components, outperforming its vanilla counterpart. To conclude, these findings reveal a critical limitation in existing text-to-image generators, shedding light on the challenge of generating multiple components within a single image using a complex prompt.
Abstract:This paper presents a method for reproducing a simple central pattern generator (CPG) using a modified Echo State Network (ESN). Conventionally, the dynamical reservoir needs to be damped to stabilize and preserve memory. However, we find that a reservoir that develops oscillatory activity without any external excitation can mimic the behaviour of a simple CPG in biological systems. We define the specific neuron ensemble required for generating oscillations in the reservoir and demonstrate how adjustments to the leaking rate, spectral radius, topology, and population size can increase the probability of reproducing these oscillations. The results of the experiments, conducted on the time series simulation tasks, demonstrate that the ESN is able to generate the desired waveform without any input. This approach offers a promising solution for the development of bio-inspired controllers for robotic systems.
Abstract:Self-organization is ubiquitous in nature and mind. However, machine learning and theories of cognition still barely touch the subject. The hurdle is that general patterns are difficult to define in terms of dynamical equations and designing a system that could learn by reordering itself is still to be seen. Here, we propose a learning system, where patterns are defined within the realm of nonlinear dynamics with positive and negative feedback loops, allowing attractor-repeller pairs to emerge for each pattern observed. Experiments reveal that such a system can map temporal to spatial correlation, enabling hierarchical structures to be learned from sequential data. The results are accurate enough to surpass state-of-the-art unsupervised learning algorithms in seven out of eight experiments as well as two real-world problems. Interestingly, the dynamic nature of the system makes it inherently adaptive, giving rise to phenomena similar to phase transitions in chemistry/thermodynamics when the input structure changes. Thus, the work here sheds light on how self-organization can allow for pattern recognition and hints at how intelligent behavior might emerge from simple dynamic equations without any objective/loss function.