Abstract:Few-shot Multi-label Intent Detection (MID) is crucial for dialogue systems, aiming to detect multiple intents of utterances in low-resource dialogue domains. Previous studies focus on a two-stage pipeline. They first learn representations of utterances with multiple labels and then use a threshold-based strategy to identify multi-label results. However, these methods rely on representation classification and ignore instance relations, leading to error propagation. To solve the above issues, we propose a multi-label joint learning method for few-shot MID in an end-to-end manner, which constructs an instance relation learning network with label knowledge propagation to eliminate error propagation. Concretely, we learn the interaction relations between instances with class information to propagate label knowledge between a few labeled (support set) and unlabeled (query set) instances. With label knowledge propagation, the relation strength between instances directly indicates whether two utterances belong to the same intent for multi-label prediction. Besides, a dual relation-enhanced loss is developed to optimize support- and query-level relation strength to improve performance. Experiments show that we outperform strong baselines by an average of 9.54% AUC and 11.19% Macro-F1 in 1-shot scenarios.
Abstract:Recently, the concept of holographic multiple-input multiple-output (MIMO) is emerging as one of the promising technologies beyond massive MIMO. Many challenges need to be addressed to bring this novel idea into practice, including electromagnetic (EM)-compliant channel modeling and accurate performance evaluation. In this paper, an EM-compliant channel model is proposed for the holographic MIMO systems, which is able to model both the characteristics of the propagation channel and the non-ideal factors caused by mutual coupling at the transceivers, including the antenna pattern distortion and the decrease of antenna efficiency. Based on the proposed channel model, a more realistic performance evaluation is conducted to show the performance of the holographic MIMO system in both the single-user and the multi-user scenarios. Key challenges and future research directions are further provided based on the theoretical analyses and numerical results.
Abstract:In this paper, the channel of an indoor holographic multiple-input multiple-output (MIMO) system is measured. It is demonstrated through experiments for the first time that the spatial oversampling of holographic MIMO systems is able to increase the capacity of a wireless communication system significantly. However, the antenna efficiency is the most crucial challenge preventing us from getting the capacity improvement. An extended EM-compliant channel model is also proposed for holographic MIMO systems, which is able to take the non-isotropic characteristics of the propagation environment, the antenna pattern distortion, the antenna efficiency, and the polarization characteristics into consideration.