Abstract:In this paper, an online evolving framework is proposed to detect and revise a controller's imperfect decision-making in advance. The framework consists of three modules: the evolving Finite State Machine (e-FSM), action-reviser, and controller modules. The e-FSM module evolves a stochastic model (e.g., Discrete-Time Markov Chain) from scratch by determining new states and identifying transition probabilities repeatedly. With the latest stochastic model and given criteria, the action-reviser module checks validity of the controller's chosen action by predicting future states. Then, if the chosen action is not appropriate, another action is inspected and selected. In order to show the advantage of the proposed framework, the Deep Deterministic Policy Gradient (DDPG) w/ and w/o the online evolving framework are applied to control an ego-vehicle in the car-following scenario where control criteria are set by speed and safety. Experimental results show that inappropriate actions chosen by the DDPG controller are detected and revised appropriately through our proposed framework, resulting in no control failures after a few iterations.
Abstract:An online evolving framework is proposed to support modeling the safe Automated Vehicle (AV) control system by making the controller able to recognize unexpected situations and react appropriately by choosing a better action. Within the framework, the evolving Finite State Machine (e-FSM), which is an online model able to (1) determine states uniquely as needed, (2) recognize states, and (3) identify state-transitions, is introduced. In this study, the e-FSM's capabilities are explained and illustrated by simulating a simple car-following scenario. As a vehicle controller, the Intelligent Driver Model (IDM) is implemented, and different sets of IDM parameters are assigned to the following vehicle for simulating various situations (including the collision). While simulating the car-following scenario, e-FSM recognizes and determines the states and identifies the transition matrices by suggested methods. To verify if e-FSM can recognize and determine states uniquely, we analyze whether the same state is recognized under the identical situation. The difference between probability distributions of predicted and recognized states is measured by the Jensen-Shannon divergence (JSD) method to validate the accuracy of identified transition-matrices. As shown in the results, the Dead-End state which has latent-risk of the collision is uniquely determined and consistently recognized. Also, the probability distributions of the predicted state are significantly similar to the recognized state, declaring that the state-transitions are precisely identified.
Abstract:This paper proposes a framework to recognize driving intentions and to predict driving behaviors of lane changing on the highway by using externally sensable traffic data from the host-vehicle. The framework consists of a driving characteristic estimator and a driving behavior predictor. A driver's implicit driving characteristic information is uniquely determined and detected by proposed the online-estimator. Neural-network based behavior predictor is developed and validated by testing with the real naturalistic traffic data from Next Generation Simulation (NGSIM), which demonstrates the effectiveness in identifying the driving characteristics and transforming into accurate behavior prediction in real-world traffic situations.