Abstract:While Large Language Models (LLMs) can theoretically support extensive context windows, their actual deployment is constrained by the linear growth of Key-Value (KV) cache memory. Prevailing compression strategies mitigate this through various pruning mechanisms, yet trade-off semantic recall for memory efficiency. In this work, we present LASER-KV (Layer Accumulated Selection with Exact-LSH Recall), a framework designed to test the limits of KV compression under a strict accumulative budgeting policy. We deviate from the standard fixed summary size approach by implementing a block-wise accumulation strategy governed by a protection divisor (n). This allows us to isolate the effects of compression from sliding window artifacts. Our experiments on the Babilong benchmark reveal performance degradation in previous compression methods by 15-30% on various long context tasks. LASER-KV maintains stable performance, achieving superior accuracies by a margin of upto 10% at 128k. These findings challenge the prevailing assumption that attention scores alone are a sufficient proxy for token utility.




Abstract:Compute-in-memory (CiM) has emerged as a compelling solution to alleviate high data movement costs in von Neumann machines. CiM can perform massively parallel general matrix multiplication (GEMM) operations in memory, the dominant computation in Machine Learning (ML) inference. However, re-purposing memory for compute poses key questions on 1) What type of CiM to use: Given a multitude of analog and digital CiMs, determining their suitability from systems perspective is needed. 2) When to use CiM: ML inference includes workloads with a variety of memory and compute requirements, making it difficult to identify when CiM is more beneficial than standard processing cores. 3) Where to integrate CiM: Each memory level has different bandwidth and capacity, that affects the data movement and locality benefits of CiM integration. In this paper, we explore answers to these questions regarding CiM integration for ML inference acceleration. We use Timeloop-Accelergy for early system-level evaluation of CiM prototypes, including both analog and digital primitives. We integrate CiM into different cache memory levels in an Nvidia A100-like baseline architecture and tailor the dataflow for various ML workloads. Our experiments show CiM architectures improve energy efficiency, achieving up to 0.12x lower energy than the established baseline with INT-8 precision, and upto 4x performance gains with weight interleaving and duplication. The proposed work provides insights into what type of CiM to use, and when and where to optimally integrate it in the cache hierarchy for GEMM acceleration.