Abstract:Dynamic representation learning plays a pivotal role in understanding the evolution of linguistic content over time. On this front both context and time dynamics as well as their interplay are of prime importance. Current approaches model context via pre-trained representations, which are typically temporally agnostic. Previous work on modeling context and temporal dynamics has used recurrent methods, which are slow and prone to overfitting. Here we introduce TempoFormer, the fist task-agnostic transformer-based and temporally-aware model for dynamic representation learning. Our approach is jointly trained on inter and intra context dynamics and introduces a novel temporal variation of rotary positional embeddings. The architecture is flexible and can be used as the temporal representation foundation of other models or applied to different transformer-based architectures. We show new SOTA performance on three different real-time change detection tasks.
Abstract:We present an open-source, pip installable toolkit, Sig-Networks, the first of its kind for longitudinal language modelling. A central focus is the incorporation of Signature-based Neural Network models, which have recently shown success in temporal tasks. We apply and extend published research providing a full suite of signature-based models. Their components can be used as PyTorch building blocks in future architectures. Sig-Networks enables task-agnostic dataset plug-in, seamless pre-processing for sequential data, parameter flexibility, automated tuning across a range of models. We examine signature networks under three different NLP tasks of varying temporal granularity: counselling conversations, rumour stance switch and mood changes in social media threads, showing SOTA performance in all three, and provide guidance for future tasks. We release the Toolkit as a PyTorch package with an introductory video, Git repositories for preprocessing and modelling including sample notebooks on the modeled NLP tasks.