Abstract:In recent years, image-scanning microscopy (ISM, also termed pixel-reassignment microscopy) has emerged as a technique that improves the resolution and signal-to-noise compared to confocal and widefield microscopy by employing a detector array at the image plane of a confocal laser scanning microscope. Here, we present a k-space analysis of coherent ISM, showing that ISM is equivalent to spotlight synthetic-aperture radar (SAR) and analogous to oblique-illumination microscopy. This insight indicates that ISM can be performed with a single detector placed in the k-space of the sample, which we numerically demonstrate.
Abstract:We present an adaptation of the pixel-reassignment technique from confocal fluorescent microscopy to coherent ultrasound imaging. The method, Ultrasound Pixel-Reassignment (UPR), provides a resolution and signal to noise (SNR) improvement in ultrasound imaging by computationally reassigning off-focus signals acquired using traditional plane-wave compounding ultrasonography. We theoretically analyze the analogy between the optical and ultrasound implementations of pixel reassignment, and experimentally evaluate the imaging quality on tissue-mimicking acoustic phantoms. We demonstrate that UPR provides a $25\%$ resolution improvement and a $3dB$ SNR improvement in in-vitro scans, without any change in hardware or acquisition scheme.