In recent years, image-scanning microscopy (ISM, also termed pixel-reassignment microscopy) has emerged as a technique that improves the resolution and signal-to-noise compared to confocal and widefield microscopy by employing a detector array at the image plane of a confocal laser scanning microscope. Here, we present a k-space analysis of coherent ISM, showing that ISM is equivalent to spotlight synthetic-aperture radar (SAR) and analogous to oblique-illumination microscopy. This insight indicates that ISM can be performed with a single detector placed in the k-space of the sample, which we numerically demonstrate.