Abstract:Deep neural networks have achieved remarkable success in a variety of computer vision applications. However, there is a problem of degrading accuracy when the data distribution shifts between training and testing. As a solution of this problem, Test-time Adaptation~(TTA) has been well studied because of its practicality. Although TTA methods increase accuracy under distribution shift by updating the model at test time, using high-uncertainty predictions is known to degrade accuracy. Since the input image is the root of the distribution shift, we incorporate a new perspective on enhancing the input image into TTA methods to reduce the prediction's uncertainty. We hypothesize that enhancing the input image reduces prediction's uncertainty and increase the accuracy of TTA methods. On the basis of our hypothesis, we propose a novel method: Test-time Enhancer and Classifier Adaptation~(TECA). In TECA, the classification model is combined with the image enhancement model that transforms input images into recognition-friendly ones, and these models are updated by existing TTA methods. Furthermore, we found that the prediction from the enhanced image does not always have lower uncertainty than the prediction from the original image. Thus, we propose logit switching, which compares the uncertainty measure of these predictions and outputs the lower one. In our experiments, we evaluate TECA with various TTA methods and show that TECA reduces prediction's uncertainty and increases accuracy of TTA methods despite having no hyperparameters and little parameter overhead.
Abstract:Person re-identification (re-id), which aims to retrieve images of the same person in a given image from a database, is one of the most practical image recognition applications. In the real world, however, the environments that the images are taken from change over time. This causes a distribution shift between training and testing and degrades the performance of re-id. To maintain re-id performance, models should continue adapting to the test environment's temporal changes. Test-time adaptation (TTA), which aims to adapt models to the test environment with only unlabeled test data, is a promising way to handle this problem because TTA can adapt models instantly in the test environment. However, the previous TTA methods are designed for classification and cannot be directly applied to re-id. This is because the set of people's identities in the dataset differs between training and testing in re-id, whereas the set of classes is fixed in the current TTA methods designed for classification. To improve re-id performance in changing test environments, we propose TEst-time similarity Modification for Person re-identification (TEMP), a novel TTA method for re-id. TEMP is the first fully TTA method for re-id, which does not require any modification to pre-training. Inspired by TTA methods that refine the prediction uncertainty in classification, we aim to refine the uncertainty in re-id. However, the uncertainty cannot be computed in the same way as classification in re-id since it is an open-set task, which does not share person labels between training and testing. Hence, we propose re-id entropy, an alternative uncertainty measure for re-id computed based on the similarity between the feature vectors. Experiments show that the re-id entropy can measure the uncertainty on re-id and TEMP improves the performance of re-id in online settings where the distribution changes over time.