Abstract:We propose the Kuramoto Graph Neural Network (KuramotoGNN), a novel class of continuous-depth graph neural networks (GNNs) that employs the Kuramoto model to mitigate the over-smoothing phenomenon, in which node features in GNNs become indistinguishable as the number of layers increases. The Kuramoto model captures the synchronization behavior of non-linear coupled oscillators. Under the view of coupled oscillators, we first show the connection between Kuramoto model and basic GNN and then over-smoothing phenomenon in GNNs can be interpreted as phase synchronization in Kuramoto model. The KuramotoGNN replaces this phase synchronization with frequency synchronization to prevent the node features from converging into each other while allowing the system to reach a stable synchronized state. We experimentally verify the advantages of the KuramotoGNN over the baseline GNNs and existing methods in reducing over-smoothing on various graph deep learning benchmark tasks.
Abstract:Many iterative and non-iterative methods have been developed for inverse problems associated with Ising models. Aiming to derive an accurate non-iterative method for the inverse problems, we employ the tree-reweighted approximation. Using the tree-reweighted approximation, we can optimize the rigorous lower bound of the objective function. By solving the moment-matching and self-consistency conditions analytically, we can derive the interaction matrix as a function of the given data statistics. With this solution, we can obtain the optimal interaction matrix without iterative computation. To evaluate the accuracy of the proposed inverse formula, we compared our results to those obtained by existing inverse formulae derived with other approximations. In an experiment to reconstruct the interaction matrix, we found that the proposed formula returns the best estimates in strongly-attractive regions for various graph structures. We also performed an experiment using real-world biological data. When applied to finding the connectivity of neurons from spike train data, the proposed formula gave the closest result to that obtained by a gradient ascent algorithm, which typically requires thousands of iterations.