Abstract:3D-shape reconstruction in extreme environments, such as low illumination or scattering condition, has been an open problem and intensively researched. Active stereo is one of potential solution for such environments for its robustness and high accuracy. However, active stereo systems usually consist of specialized system configurations with complicated algorithms, which narrow their application. In this paper, we propose Neural Signed Distance Field for active stereo systems to enable implicit correspondence search and triangulation in generalized Structured Light. With our technique, textureless or equivalent surfaces by low light condition are successfully reconstructed even with a small number of captured images. Experiments were conducted to confirm that the proposed method could achieve state-of-the-art reconstruction quality under such severe condition. We also demonstrated that the proposed method worked in an underwater scenario.
Abstract:Active 3D measurement, especially structured light (SL) has been widely used in various fields for its robustness against textureless or equivalent surfaces by low light illumination. In addition, reconstruction of large scenes by moving the SL system has become popular, however, there have been few practical techniques to obtain the system's precise pose information only from images, since most conventional techniques are based on image features, which cannot be retrieved under textureless environments. In this paper, we propose a simultaneous shape reconstruction and pose estimation technique for SL systems from an image set where sparsely projected patterns onto the scene are observed (i.e. no scene texture information), which we call Active SfM. To achieve this, we propose a full optimization framework of the volumetric shape that employs neural signed distance fields (Neural-SDF) for SL with the goal of not only reconstructing the scene shape but also estimating the poses for each motion of the system. Experimental results show that the proposed method is able to achieve accurate shape reconstruction as well as pose estimation from images where only projected patterns are observed.
Abstract:In this paper, we present an approach to image enhancement with diffusion model in underwater scenes. Our method adapts conditional denoising diffusion probabilistic models to generate the corresponding enhanced images by using the underwater images and the Gaussian noise as the inputs. Additionally, in order to improve the efficiency of the reverse process in the diffusion model, we adopt two different ways. We firstly propose a lightweight transformer-based denoising network, which can effectively promote the time of network forward per iteration. On the other hand, we introduce a skip sampling strategy to reduce the number of iterations. Besides, based on the skip sampling strategy, we propose two different non-uniform sampling methods for the sequence of the time step, namely piecewise sampling and searching with the evolutionary algorithm. Both of them are effective and can further improve performance by using the same steps against the previous uniform sampling. In the end, we conduct a relative evaluation of the widely used underwater enhancement datasets between the recent state-of-the-art methods and the proposed approach. The experimental results prove that our approach can achieve both competitive performance and high efficiency. Our code is available at \href{mailto:https://github.com/piggy2009/DM_underwater}{\color{blue}{https://github.com/piggy2009/DM\_underwater}}.
Abstract:Importance of structured-light based one-shot scanning technique is increasing because of its simple system configuration and ability of capturing moving objects. One severe limitation of the technique is that it can capture only sparse shape, but not high frequency shapes, because certain area of projection pattern is required to encode spatial information. In this paper, we propose a technique to recover high-frequency shapes by using shading information, which is captured by one-shot RGB-D sensor based on structured light with single camera. Since color image comprises shading information of object surface, high-frequency shapes can be recovered by shape from shading techniques. Although multiple images with different lighting positions are required for shape from shading techniques, we propose a learning based approach to recover shape from a single image. In addition, to overcome the problem of preparing sufficient amount of data for training, we propose a new data augmentation method for high-frequency shapes using synthetic data and domain adaptation. Experimental results are shown to confirm the effectiveness of the proposed method.