Abstract:Neural fields are an emerging paradigm that represent data as continuous functions parameterized by neural networks. Despite many advantages, neural fields often have a high training cost, which prevents a broader adoption. In this paper, we focus on a popular family of neural fields, called sinusoidal neural fields (SNFs), and study how it should be initialized to maximize the training speed. We find that the standard initialization scheme for SNFs -- designed based on the signal propagation principle -- is suboptimal. In particular, we show that by simply multiplying each weight (except for the last layer) by a constant, we can accelerate SNF training by 10$\times$. This method, coined $\textit{weight scaling}$, consistently provides a significant speedup over various data domains, allowing the SNFs to train faster than more recently proposed architectures. To understand why the weight scaling works well, we conduct extensive theoretical and empirical analyses which reveal that the weight scaling not only resolves the spectral bias quite effectively but also enjoys a well-conditioned optimization trajectory.
Abstract:Class-conditional image generation using generative adversarial networks (GANs) has been investigated through various techniques; however, it continues to face challenges such as mode collapse, training instability, and low-quality output in cases of datasets with high intra-class variation. Furthermore, most GANs often converge in larger iterations, resulting in poor iteration efficacy in training procedures. While Diffusion-GAN has shown potential in generating realistic samples, it has a critical limitation in generating class-conditional samples. To overcome these limitations, we propose a novel approach for class-conditional image generation using GANs called DuDGAN, which incorporates a dual diffusion-based noise injection process. Our method consists of three unique networks: a discriminator, a generator, and a classifier. During the training process, Gaussian-mixture noises are injected into the two noise-aware networks, the discriminator and the classifier, in distinct ways. This noisy data helps to prevent overfitting by gradually introducing more challenging tasks, leading to improved model performance. As a result, our method outperforms state-of-the-art conditional GAN models for image generation in terms of performance. We evaluated our method using the AFHQ, Food-101, and CIFAR-10 datasets and observed superior results across metrics such as FID, KID, Precision, and Recall score compared with comparison models, highlighting the effectiveness of our approach.