Abstract:Flat minima, known to enhance generalization and robustness in supervised learning, remain largely unexplored in generative models. In this work, we systematically investigate the role of loss surface flatness in generative models, both theoretically and empirically, with a particular focus on diffusion models. We establish a theoretical claim that flatter minima improve robustness against perturbations in target prior distributions, leading to benefits such as reduced exposure bias -- where errors in noise estimation accumulate over iterations -- and significantly improved resilience to model quantization, preserving generative performance even under strong quantization constraints. We further observe that Sharpness-Aware Minimization (SAM), which explicitly controls the degree of flatness, effectively enhances flatness in diffusion models, whereas other well-known methods such as Stochastic Weight Averaging (SWA) and Exponential Moving Average (EMA), which promote flatness indirectly via ensembling, are less effective. Through extensive experiments on CIFAR-10, LSUN Tower, and FFHQ, we demonstrate that flat minima in diffusion models indeed improves not only generative performance but also robustness.
Abstract:Federated learning (FL) has recently garnered attention as a data-decentralized training framework that enables the learning of deep models from locally distributed samples while keeping data privacy. Built upon the framework, immense efforts have been made to establish FL benchmarks, which provide rigorous evaluation settings that control data heterogeneity across clients. Prior efforts have mainly focused on handling relatively simple classification tasks, where each sample is annotated with a one-hot label, such as MNIST, CIFAR, LEAF benchmark, etc. However, little attention has been paid to demonstrating an FL benchmark that handles complicated semantics, where each sample encompasses diverse semantic information from multiple labels, such as Panoptic Scene Graph Generation (PSG) with objects, subjects, and relations between them. Because the existing benchmark is designed to distribute data in a narrow view of a single semantic, e.g., a one-hot label, managing the complicated semantic heterogeneity across clients when formalizing FL benchmarks is non-trivial. In this paper, we propose a benchmark process to establish an FL benchmark with controllable semantic heterogeneity across clients: two key steps are i) data clustering with semantics and ii) data distributing via controllable semantic heterogeneity across clients. As a proof of concept, we first construct a federated PSG benchmark, demonstrating the efficacy of the existing PSG methods in an FL setting with controllable semantic heterogeneity of scene graphs. We also present the effectiveness of our benchmark by applying robust federated learning algorithms to data heterogeneity to show increased performance. Our code is available at https://github.com/Seung-B/FL-PSG.