Abstract:Satellite-based remote sensing missions have revolutionized our understanding of the Ocean state and dynamics. Among them, spaceborne altimetry provides valuable measurements of Sea Surface Height (SSH), which is used to estimate surface geostrophic currents. However, due to the sensor technology employed, important gaps occur in SSH observations. Complete SSH maps are produced by the altimetry community using linear Optimal Interpolations (OI) such as the widely-used Data Unification and Altimeter Combination System (DUACS). However, OI is known for producing overly smooth fields and thus misses some mesostructures and eddies. On the other hand, Sea Surface Temperature (SST) products have much higher data coverage and SST is physically linked to geostrophic currents through advection. We design a realistic twin experiment to emulate the satellite observations of SSH and SST to evaluate interpolation methods. We introduce a deep learning network able to use SST information, and a trainable in two settings: one where we have no access to ground truth during training and one where it is accessible. Our investigation involves a comparative analysis of the aforementioned network when trained using either supervised or unsupervised loss functions. We assess the quality of SSH reconstructions and further evaluate the network's performance in terms of eddy detection and physical properties. We find that it is possible, even in an unsupervised setting to use SST to improve reconstruction performance compared to SST-agnostic interpolations. We compare our reconstructions to DUACS's and report a decrease of 41\% in terms of root mean squared error.
Abstract:Total column water vapor is an important factor for the weather and climate. This study apply deep learning based multiple regression to map the TCWV with elements that can improve spatiotemporal prediction. In this study, we predict the TCWV with the use of ERA5 that is the fifth generation ECMWF atmospheric reanalysis of the global climate. We use an appropriate deep learning based multiple regression algorithm using Keras library to improve nonlinear prediction between Total Column water vapor and predictors as Mean sea level pressure, Surface pressure, Sea surface temperature, 100 metre U wind component, 100 metre V wind component, 10 metre U wind component, 10 metre V wind component, 2 metre dew point temperature, 2 metre temperature. The results obtained permit to build a predictor which modelling TCWV with a mean abs error (MAE) equal to 3.60 kg/m2 and a coefficient of determination R2 equal to 0.90.
Abstract:This article deals with an important aspect of the neural network retrieval of sea surface salinity (SSS) from SMOS brightness temperatures (TBs). The neural network retrieval method is an empirical approach that offers the possibility of being independent from any theoretical emissivity model, during the in-flight phase. A Previous study [1] has proven that this approach is applicable to all pixels on ocean, by designing a set of neural networks with different inputs. The present study focuses on the choice of the learning database and demonstrates that a judicious distribution of the geophysical parameters allows to markedly reduce the systematic regional biases of the retrieved SSS, which are due to the high noise on the TBs. An equalization of the distribution of the geophysical parameters, followed by a new technique for boosting the learning process, makes the regional biases almost disappear for latitudes between 40{\deg}S and 40{\deg}N, while the global standard deviation remains between 0.6 psu (at the center of the of the swath) and 1 psu (at the edges).